
LQ1 IVKoearoh Oorporation-

SOFTWARE APPROACH TO AUTOMATIC

PATCHING OF ANALOG COMPUTER

(NASA-CE-120170) S3F WA1 E : OACH 20 74-198 31
AUTAC1.IC PACHING OF A::ALCG CCMPUqOTzEp

Final eport (Codz :B rscarch Corp.,
Anaheim, Calif.) 29 p HC $4.50 CCL 09B Unclas

T3/I0 16001

CODE RESEARCH CORPORATION m 1363 STATE COLLEGE BLVD. ANAHEIM, CALIF. 92806
• 714/533-6333

FINAL REPORT

FOR

SOFTWARE APPROACH TO AUTOMATIC

PATCHING OF ANALOG COMPUTER

PREPARED BY

CODE Research Corporation

1363 S. State College Blvd.

Anaheim, California 92803

UNDER

CONTRACT NUMBER NAS8-28616

November 20, 1973

-i

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 Purpose

1.2 General Method

2.0 ELEMENTS OF THE APV LANGUAGE

2.1 Constants

2.2 Systems Variables

2.3 Program Variables

2.4 Functions

3.0 EXPRESSIONS

4.0 STATEMENTS

4.1 General

4.2 Comments

4.3 Setting Potentiometers

4.4 Setting DAC's

4.5 Testing

5.0 DIRECTIVES

5.1 CON

5.2 MODE

5.3 ASN

5.4 WAIT

5.5 END

1.0 INTRODUCTION

1.1 Purpose

The Automatic Patching Verification program (APV) provides

the hybrid computer programmer with a convenient method of

performing a static check of the analog portion of his

study. The static check insures that his program is

patched as he has specified, and that the computing compo-

nents being used are operating correctly.

1.2 General Method

The APV language the programmer uses to specify his condi-

tions and interconnections is similar to the Fortran lang-

uage. This similarity is, however, only in syntax; the

two languages have different purposes and, therefore, their

meaning is different. The APV control program reads APV

source program statements from an assigned input device

(normally the card reader). Each source program statement

is processed immediately after it is read. A statement may

select an analog console, set an analog mode, set a potenti-

ometer or DAC, or read from the analog console and perform a

test, etc. Statements are read and processed sequentially.

If an error condition is detected, an output occurs on an

assigned output device (normally the line printer). When a

end statement is read, the test is terminated. There is no

restriction on the number of statements in an APV source

program.

-- 1-

2.0 ELEMENTS OF THE APV LANGUAGE

2.1 Constants

A constant is a string of characters representing a real

number.

Examples: 3.7

-5

3872

0.7

-.382

+7.66

Only the characters 0 thru 9, +, -, and . may be used in a

constant. There must be no blank characters within a

constant. Constants are converted to floating point numbers

in the digital computer. Therefore, a constant must lie
99 99between -1099 and +109, and there is up to 12 digits of

precision available.

2.2 System Variables

A system variable is a string of characters representing the

value of a particular analog device. The devices and their

names are given in table 1.

Table 1. Analog Devices

3 Letter 1 Letter IDEVICE Name Name

1. Amplifier AMP A

2. Potentiometer POT P

3. Multiplier MUL M

4. Resolver RES R

5. Variable Function Gen. FUN F

6. Trunk Line TNK T

7. ADC ADC none

8. Integrator INT I

9. DAC DAC none

10. Potentiometer Coeff. SET S

The general form is: NAME (N), where N is an unsigned

integer between 0 and 1,000,000 written without a decimal

point. N represents the number of the named device.

Examples: AMP9321) means Amplifier 321

T(67) means Trunk Line 67

DAC(0) means DAC 0

The 3 letter and 1 letter names for the same device may be

used interchangeably. INT(72) means the same as 1(72).

There must be no blank characters within a device name or

within the integer number N.

Items 1 thru 7 in table 1 means the following: Whenever

one of these device names occurs in a program the output

of the corresponding device is read and the device name is

replaced.by the value of the ratio of the output voltage to

the reference voltage. This ratio is held as a floating

point number in the digital computer.

Example: AMP(47)

When the APV program encounters this symbol, the output

voltage of amplifier 47 is read and the symbol AMP(47) is

replaced by the value of the ratio of this output voltage

to the reference voltage.

Item 8 in table 1 means the following: Whenever an

integrator name occurs in a program, this name is replaced

by a value that is the equivalent voltage if it were summing

its inputs. That is, this value is a measure of the

integrand or initial derivative. The value is held as a

floating point number in the digital computer.

Items 9 and 10 in table 1 have two different meanings,

depending on how they are used in a statement. The two

meanings are either:

1. Set the indicated device to a specified value.

Example: DAC(22)

DAC 22 is set to a specified value.

2. The device name is replaced by the last value that

this device was set to.

Example: S(14)

This name is replaced by the last value

that potentiometer 14 was set to.

2.3 Program Variables

A program variable is a string of characters representing

a real number variable. It consists of from one to four

characters of which the first character must be a letter

(A thru Z) and the remaining characters must be either

letters (A thru Z) or digits (0 thru 9).

Examples: A

FZ

T37

L42M

KFGM

R999

W5

There must be no blank characters within a variable name.

The maximum number of different program variable names used

throughout an APV source program is dependent upon the size

of the digital computer memory. This number is at least

250. Thenames of directives may not be used as variable

names. Therefore, CON, MODE, ASN, VFUN, WAIT, and END must

not be used as variable names.

2.4 Functions

A function is a string of characters representing the value

of an arithmetic function. The general form is:

NAME (E), where E is any legitimate expression

The APV program recognizes the following functions:

NAME Argument E Value of Function

SINF sine of (E x scaling:constant)

COSF cosine of (E x scaling constant)

TANF tangent of (E x scaling constant)

-ASIN -1<E<+1 (arc sine of E in radians)/scaling
constant, where -r/2 < arcsin
E< T/2

ACOS -1<E<+1 (arc cosine of E in radians)/
scaling constant, where 0<arccos
E<w

ATAN !(arc tangent of E in radians)/
scaling constant, where -w/2
<arctan E<ff/2

SQRT i square root of E. If E is negative
then the result will be - -E.

ABSF i absolute value of E.

COMP comparator function.
1 if E >0
0 if E <0

VFUN Variable Function Generator

The scaling constant referred to in the trigonometric

functions is equal to 7/0.9. This value may be easily

changed by recompiling the APV program. There must be no

blank characters within a function name.

Example: SQRT(+81.0)

The square root of 81.0 would be taken

and then that value (9) would replace

the symbol SQRT(+81.0)

-6-

3.0 EXPRESSIONS

An expression consists of a string of constants, system

variables, program variables, functions, and other expres-

sions separated by arithmetic operators.

The arithmetic operators consist of + (addition), - (sub-

traction), * (multiplication), and / (division). Multi-

level parenthesis may be used within an expression to

clarify the hierarchy of operations. In the absence of

clarifying parenthesis, the hierarchy of operations follows

the convention of: Multiplication and Division first, then

Addition and Subtraction. Operations of equal precedence

are evaluated from left to right.

Examples: AX + 5.2 - 7

0.5 * KR * INT(51)

6.1/SINF(8 + A(3))

((A + M5)/3.6) * (1(7) + COSF(R*6)

K - (-1(5))
Evaluation of an expression results in the finding of a

single real number which replaces the expression. During

expression evaluation the program variables involved will

take on their currently assigned values. System variables

will take on the values of their respective readings from

the devices involved. System variables SET(N), S(N), and

DAC(N) will take on the value of their last setting.

1. Limit Option

The value of an expression may be limited by

placing limits after the expression. L and U

are constants which stand for the lower and

upper limits respectively. Let E by any

1-

expression. Then: E,LIM(L,U) would mean the

following:

a) if L<E<U then E would be the value .of the

expression.

b) if E<L then L would be the value of the

expression.

c) if E U then U would be the value of the

expression.

U, of course, must be greater than or equal to L.

Example: 1.35, LIM(-l, +1)

The value of this expression would

be equal to +1.

4.0 STATEMENTS

4.1 General

A statement is a unit of information that is processed by

the APV program. It consists of a BCD card image which

is broken down as follows:

column 1 : C for comment

columns 2-5 : not used by APV program

column 6 continuation for VFUN

columns 7-72 : statement

columns 73-80: not used by APV program

If card. column 1 is not a C character, it is not used by

the APV program. Card columns that are not used by the

APV program may contain any legitimate characters. Card

columns 73-80 may be used for sequencing if desired.

All statements, except comment statements, must begin on

or after card column 7. Blank characters may occur any-

where before or within a statement, however, they must not

appear within a name or a constant. Only the VFUN statement

may have continuation statements.

The card image does not necessarily have to come from a

card reader. It may come from another input device-such

as a paper tape reader.

4.2 Comments

A comments statement has the form:

card column 1 = C

card columns 2-80 = comment to be output

The APV program will output the statement on the currently

assigned output device and then continue.

Program Variable Definitions

A program variable definition statement equates a program

variable with a value. The general form is:

Program variable name = expresssion

Examples: KR5 = 6.3285 Defines KR5

ZM = 2.1 * (5 -KR5)+ 0.3 Defines ZM

J = KR5*M(4),LIM(-8,+6.3) Defines J

The same program variable may be redefined several times
throughout a program. A program variable must always be
defined before it can be used.

4.3 Setting Potentiometers

A potentiometer is set by a statement of the form:

SET(N) = expression

or

S(N) = expression

where N is the potentiometer number and the expression is
the value of the potentiometer coefficient to be used.

Example: SET(16) = 13.2 * I(5)/2

Potentiometer 16 is set with a coeffi-

cient equal to the computed value of

the expression (13.2 * I(5)/2).

The same potentiometer may be reset several times during
a program run.

4.4 Setting DAC's

A DAC is set by a statement in the form:

DAC(N) = expression

]0

where N is the DAC number and the expression is the value

that is to be output to the DAC.

Example: DAC(5) = 3.0 + 0.7 * (-R(3)

DAC 5 is set with a value that is equal to

the computed value of the expression

(3.0 + 0.7 * (-R(3)).

The same DAC may be reset several times during a program.

4.5 Testing

A test is performed by a statement of the form:

System variable = expression

where the system variable may have any system variable

name except SET(N), S(N), or DAC(N).

When a test statement is encountered by the APV program,

the following events occur. The analog device specified by

the system variable is read and the expression is evaluated.

If these two values lie within a certain tolerance, the

test passes and the program continues. If these two values

do not lie within a certain tolerance the test fails, error

comment is output, and the program then continues. Specifi-

cally, if S is the ratio read, E is the value of the expres-

sion, and T is the tolerance used for testing, then the test

passes if, and only if: E - T < S < E + T.

The tolerance used for testing may be specified in one of

two ways:

1. Built-In Tolerances

Built-in tolerances will be used unless a tolerance

is specified by the programmer (see 2. below). A

separate built-in tolerance exists for each arith-

metic operation. They are:

17

Symbolic Name Arithmetic Value
of Tolerance Operation

TOLl + and - 0.0001

TOL2 * and / 0..0002

TOL3 SINF and COSF 0.0005

TOL4 TANF 0.0005

TOL5 ASIN and ACOS 0.0005

TOL6 ATAN 0.0005

TOL7 ABSF 0.0002

TOL8 SQRT 0.0002

TOL9 VFUN 0.0010

TOL10 Minimum limit for 0.0020
reading

TOL11 Minimum tolerance 0.0001
for testing

The values of the built-in tolerances may be easily

changed by recompiling the APV program.

When an expression is evaluated, the appropriate values

of the built-in tolerances are added together each time

an arithmetic operation is performed. For example, the

expression (3 * 5 -SQRT(5)) would result in a built-in

tolerance value equal to (TOL2--TOL8+TOL1). If a

program variable is encountered, the previously computed

tolerance for that variable will also be added into the

total for the expression.

2. Specified Tolerances

A tolerance T may also be specified by the programmer

using the form:

System variable = expression, TOL T

or

- 12 -

System variable = expression, LIM(L,U), TOL T

where T is a constant and 0.0001iTl.0.

The specified tolerance will always override the

built-in tolerances.

Whichever method is used to determine the tolerance, the

following will always be true. If the tolerance is ever

less than TOL11, it will automatically be replaced by

TOL11.

Examples:

(a) MUL(7) = 1.03/RES(1)

Multiplier 7 is read and the expression

(1.03/RES(1)) is evaluated. A built-in

tolerance equal to (TOL2) will be used to

test the two values.

(b) POT(2) = 5.5 * POT(8) - 3.3, TOL 0.72

Potentiometer 2 is read and the expression

(5.5 * POT(8) - 3.3) is evaluated. A

specified tolerance of 0.72 will be used

to test the two values.

(c) ADC(5) = 0.076

ADC 5 is read and compared to the value

0.076. Since a built-in tolerance of 0

is implied by the expression, the tolerance

will automatically be changed to TOL11.

TOL10 is a special purpose tolerance. If the ratio of any

reading from an analog device to the reference voltage is

less than TOL10 in absolute value, a warning will be output

and the program will continue. This enables the user to

distinguish whether a wire is missing or whether the voltage

is just too low to actually determine.

13

5.0 DIRECTIVES

5.1 CON (Console)

This directive allows the programmer to select an analog

console. The form of this statement is:

CON = N

where N is an unsigned integer between 0 and 1,000. N

represents the number-of the analog console. There must

be no blank characters within the integer N.

Once a CON statement is given, all further APV statements

refer to this analog console until another CON statement

which- selects another analog console is encountered.

Example: CON = 3

Analog console 3 is selected for all

future APV commands.

5.2 MODE

This directive allows the programmer to set an analog

console to a particular mode. The form of the statement

is:

MODE = code

where the first character of the code means the following:

First character MODE
of code

C Compute

H Hold

I Initial Condition (or Reset)

P Potset

S Static Test

Ts

The remaining characters of the code may be any legiti-

mate characters.

Examples:

(a) MODE = S

The analog computer is put in the static

test mode.

(b) MODE = INITIAL CONDITION

The analog computer is put in the initial

condition mode.

5.3 ASN (Assign)

This directive allows the programmer to replace variables

in his program by other variables. The form of the state-

ment is:

ASN (Ul,V 1) (U2 ,V2) (U3 ,V3)------

where the Ui and Vi represent variable names. In all

future APV statements the variable Ui will be replaced by

the corresponding variable Vi before any action is taken

with the variable. All future statements are affected by

this, including ASN statements. The variables U. and V.

may be either program or system variables andthey may be

intermixed as follows: A program variable may replace a

program variable, or a system variable may replace a system

variable, or a system variable may replace a program

variable, or vice versa.

Example: ASN (A, X3) (B, A(2)).

B = 5 * A + I(9)

- 15 -

The program variable A will be replaced

by the program variable X3, and the

program variable B will be replaced by

the system variable A(2) in all future

statements. The statement B = 5 * A +

I(9) will be interpreted as the statement

A(2) = 5 * X3 + 1(9).

The maximum number of. replacements which may be made in one

run is dependent upon the size of the digital computer

memory. This number is at least 20.

A variable Ui may only be replaced by one variable Vi in

the same run. The following example illustrates this:

(ASN (A, B)

(ASN (A, C)

A will be replaced by B and B will be replaced by C.

5.4 TOL

This directive allows the programmer to change the values

of the built-in tolerances. (Paragraph 4.3.7). The form

of the statement is:

TOL (t, n)

where t is an unsigned positive integer from 1 to 11

written without a decimal point and n is a constant. t

is the number of the built-in tolerance and n is the new

value for that tolerance.

Built-in tolerances which are not specified by a TOL

statement will be assigned their standard values as given

-16-

in paragraph 4.3.7. TOL statements may change the value

of a tolerance several times throughout a program.

5.5 OUT

This directive allows the programmer to output the current

values of program and system variables.

The form of the statement is:

OUT(V1, V 2 , V 3 , ---- ,Vn)

where the Vl's are either program or system variables.

Program variables must have been previously defined and

system variables must correspond to devices which really

exist.

The OUT statement is output first and is followed

immediately by a list of values which correspond to the

respective variables.

Example: OUT(KAS, MUL(20), 1(4))

This statement causes an output of

this statement followed immediately

by the current values of the program

variable KAS and the system variables

MUL(20) and 1(4).

5.6 S

This directive allows the programmer to switch input

control. The form of the statement is:

S

If current input control. is located at the primary input

-17-

device, then input control is switched immediately to

the secondary input device.

If current input control is located at the secondary

input device, then input control is switched immediately

to the primary input device.

Note that switching to a keyboard for input causes the

APV source program to wait until the user has typed in

a statement.

5.7 JUMP

This directive allows the programmer to pass over state-

ments from the primary input device without executing

them and go directly to a desired statement to resume

execution. The form of the statement is:

JUMP , n

where n is the statement number of another statement.

The jump may be in either the forward or reverse direction.

Example: JUMP , 372

372 K=0.3

When the JUMP, 372 statement is encountered,

the program goes immediately to the statement

numbered 372. K=0.3 is executed next and the

program continues execution from.that point.

-18-

The JUMP statement automatically causes input control to

go to the primary input device when the requested state-

ment has been found.

5.8 IF

This directive allows the programmer to conditionally

pass over statements from the primary input device with-

out executing them and go directly to a desired statement

to resume execution, depending upon whether the last test

passed or failed. The form of the statement is:

IF, n

where n is the statement number of another statement. The

jump may be in either the forward or reverse direction.

If the last test passed, the IF statement does nothing and

the next sequential statement after the IF statement is

executed next. If the last test failed, the IF statement

jumps to the statement indicated by n and execution will

continue from that point. If no test statement has yet

been encountered, the next sequential statement after the

IF statement is executed next.

Example: I(23) = 0.5 * M (6)

IF

20 K = 0.2

77 J = 0.05

If the test 1(23) = 0.5 * M(6) passes,

the program goes directly from the IF

statement to statement 20. If the

-19-

test I(23)+0.5*M(6) fails, the program

goes directly from the IF statement

to statement 77.

The IF statement does not have to follow the test state-

ment immediately. It could be placed any number of state-

ments after the test statement.

The IF statement automatically causes input control to

go to the primary input device under the following

circumstances: (1) the IF statement jumps and, (2)

the requested statement can be found.

the IF statement allows the program to attempt to

diagnose a test failure.

5.9 MOVE

This directive gives the programmer the ability to move

a specified number of statements away from the current

statement from the primary input device. The form of the

statement is:

MOVE, n

where n is a signed or unsigned integer with no imbedded

blank characters. If n>O, the move is forward n state-

.ments. If n<O, the move is backward n statements. If

n=O, the last statement executed is executed again. The

statement MOVE without , n is automatically interpreted

as MOVE , 0.

Example MOVE , 3

X = .3

J = 0.7

28 M = 1(6)

-20-

when the MOVE , 3 statement is encountered

the program goes directly to statement

28 and continues execution at that point.

The MOVE statement automatically causes input control to

go to the primary input device. An attempt to move back-

ward past the first statement of the APV source program

results in a move to the first statement of the program.

Ai attempt to move forward beyond the end statement of the

APV source program results in a move to the end statement

of the program.

5.10 ON

This directive puts the APV control program into the pause-

on mode. The format for the statement is:

ON

If a test failure occurs in the pause-on mode, input

control is switched immediately to the secondary input

device. If the secondary input device happens to be a

211 keyboard, a pause occurs while waiting for input.

The APV control program is automatically put in the pause-

on.mode,if no ON or OFF statements are encountered.

5.11 OFF

This directive puts the APV control program into the pause-

off mode. The format for the statement is:

OFF

If a test failure occurs in the pause-off mode, input

control remains at the current input device. If the input

device happens to be the INPUT file on the disc, no pause

occurs after a test failure. This feature may be used to

diagnose test failures.

-21-

Example: PIG = 5379 , 1

The P.I.G. is first put in the Reset

mode and then a count of 5379 is set in

the P.I.G. count value register and the

P.I.G. oscillator is set to 1 kc.

5.12 WAIT

This directive allows the program to output a comment to

the user and then wait for a response from him. It should

be used when manual intervention is necessary from the

user. The form of the statement is:

WAIT

or WAIT , comment

When this statement is encountered, the following happens:

First, the entire WAIT statement (card columns 1-80) is

output on the currently assigned output devices. Input

control is then given to the secondary input device. If

this device happens to be a keyboard, a pause occurs while

waiting for the input from the user. The user should take

whatever manual action is requested by the wait statement

and then type the "S" statement in order to continue.

Examples: WAIT

WAIT, CHANGE PATCHBOARD

WAIT, FOR 1 MINUTE

5.13 End

An end statement has the form:

card column 1 = $

card columns 2-80 = REPEAT (optional)

-22-

This statement tells the APV control program that the

APV source program run is complete. This must be

the last statement of every APV source program. This

statement causes an output on the currently assigned

output devices. $ tells the APV control program to

exit back to the operation system monitor. $ REPEAT

tells the APV control program to reinitialize itself

for another APV source program run.

6.0 OPERATING PROCEDURES

The APV program binary load module is on magnetic tape.

It can be loaded under the modified Ames system by a $L

control command on the typewriter.

There are several assigns that need to be made for the

input/output devices used by APV.

Unit 1 is the primary input device normally assigned to.

the card reader. Unit 2 is the secondary input device

normally assigned to the typewriter.

Unit 3 is the primary output device normally assigned to

the line printer.

Unit 4 is the secondary or error listing device normally

assigned to-the .typewriter or magnetic tape.

Under the modified Ames system these assignments can be

made by typing a $GO command on the typewriter and.reading

the following control command from the card reader.

$WO,,122,754,201,, 1 = Reader

$WO,,1.23,763,202,, 2 = Typewriter

$WO,,124,745,203.,; 3 = Printer

$WO.,,125,763,204,, 4 = Typewriter

-23-

The APV source statement would follow these control cards.

To start APV a $X control command is typed on the type-

writer and the source statement would be read and

interpreted from the card reader and listed on the line

printer. If the program is operating in the pause mode

each error will cause the program to request a typewriter

input. In the no pause mode the program will process

the source statement and list error on the error device.

7.0 PROGRAM EXAMPLE

.The following figure illustrates the use of APV in

performing a check on typical analog patching. The

mechanization of the analog problem is shown in figure 1.

No effort has been made to make this a reasonable

mechanization. It has simply been constructed to use

several different types of circuits. The APV program is

shown in figure 2. Comments have been inserted in the

program to make the source listing self-explanatory.

-24-

43.1/-15.0

LIM+R \01 -R 03

02 01 AP 03 Te1 05
M04 1 I\

DAC3>I
GEN.

44
M06

ADC
06 Comp---~ prr

06 +R----T

Figure 1 APV Test Circuit

FORTRAN CODING FORM

STATE C STATEMENT
NO N

62 4 151 9029 210j j 11 12 13 14 15156111 1819 201203123331 3 625126 34 35 38394 4 42 43 44|454 1148!49!50 51!52 53 5 55 6 5158 59160 61 62 3 6465 i6661

I LLIril ITpl, Iil6L1/GL1 1 CI I I 1 JL&_1 IiE II IC- I IFI7 I I I II1 I lI I LI_

i1fIfl E ~li Ll INAL1 1Sdi JfJILLLKLJ I1 JJJIIJJ ffiL i 1i I I 1 I I I .Ll

Q PiHNi IC l II Ili ffl L jI 4EJ lII I iLLLLLl LIr

S ' TI Ri l lHEI PI I i I I i 'fi cl II

_________________________________I I I I I I1I I I I I I I I I I I I .1 I I I I I I I I I

-11 1 If ri I PI19 015.1 1 I I IP-I I I I + -r I I I I 1 Q I I I I I I I I I I I I I I I I I
L=iA 1l I 2* ! lie1 1 1 1 I I I I 1 i I I I I I I I I I I I III Il I I I I I II I I I II I I I I

L - lMM~ll(l Ii I I Lirll i I LIJIfi L LLI 1 I A - L -- I I I I I i W I L Ll IIfII

D ka63) I=! lglerrlf *GINHIWAIZ1 1 I I I II I I I I I I I I I I I I I I I I I-I I I I I I-

A 11 1 4 ~IS I I4.1J IC-IIISI IIQITIr iE Q iRIli'h ifI ifmiPili i ,. Il I IIlIi -Ir3i., iD11

S1 Illcln I I.1501111IRIPIilF IPILLLLL ~Y6LlPIIILlII1111|111

L II I -INm 0 kSIII) It)N I tI I 101F)I-(i QI i I I I I I I I m IrI L _1 1 1 I 1 I I I 1 I I I I I

- - j :SI IC-I4IgqC4)<I.$I I t Ie619 cim2 i I 'I I Ifi i iI3i ir- Rio i HiI IPiA'(I i iAiib I I p IPi -13i 1 I 1 1 1 1 1 1 1 1 I

I L I1 r41 I1 -Tl kI SI Eil IITIiIiIII I II l l I I I I HI 1 I I ILI I1 I1 1 1 1 I I1

I-I ITH ilSI ICwARIEICY-lISI 151h l II IIH E I I I IS1 I II

Il JHI PI (15n LI 1 1 I I .51 INI4 h ip al. IL oi(I4fI-i , 1:51ia1 co 1 1 I I I I I I I I I I I I I I I I

..1..J...... .1 ..iT I ' I I IAl hi i IS I 1 1 1 I I I .I I i 11 I I L 1I I I 1 I 1 1 1I
I P I f I I I I I I I I I I IIl 1I I o I I I I I 1 -

I ~ ~ ~ ~ ~ ~ Illr l H lcl 61@0 111 11 11 11 111171111 1 11 11 1 11 11 1 11 11 1 11

